Document	Title:	Part # and Rev.	
Description,		13476-00	
AN, Underground power cable		Release Date:	
installations Soil thermal resistivity		Release Dale.	
Rev.	Description	Revision By	Date

Production Filename: 13476 (In Product Library)

Path to Working Files: DecaDoc\Application Notes\Master

Dimensions: 8.5 inch wide, 11 inch tall

Material: Paper, 92 Bright White or better, $75g/m^2$ or heavier

Colors: Color Print on White

Printer: HP Color LaserJet 8550-PS

Finish: None

Adhesive: None

Special Notes: Illustrations are Ref Only ** Not to Scale ** (Shown page 1 of 4)

Underground Power Cable Insta	llations: Soil Thermal Resistivity
	ices Inc., Pullman, WA 99163 USA and
	es Laboratory, PMB PO Aitkenvale, Townsville,
	4814
	rmal resistivity. Australian Power Transmission Old :PTD Publications: 46-48.
and Distribution. Chapter thin,	Queri ris i annualione ito ito.
Who would have thought that an	in the dark. Since, even in a well-designed
electrical power engineer would need to	system, the soil may account for half or
be an expert at soil physics as well? But, increasingly, such knowledge is becoming	more of the total thermal resistance, engineers need to treat that part with as
critical in the design and implementation of	much respect as they do the cables and
underground power transmission and	ducts.
distribution systems. The issues are simple	Contraction (Contraction)
enough. Electricity flowing in a conductor	Thermal Resistivity of Soil
generates heat. A resistance to heat flow	Good theories describing thermal resistivity
between the cable and the ambient	of soil have been around for a long time (de
environment causes the cable temperature to	Vries, 1963; Campbell and Norman, 1998).
rise. Moderate increases in temperature are	These models are based on dielectric mixing
within the range for which the cable was designed, but temperatures above the design	models, and treat the overall resistivity as a weighted parallel combination of the
temperature shorten cable life. Catastrophic	constituent resistivities. Five constituents are
failure occurs when cable temperatures	important in determining the thermal
become too high, as was the case in	resistivity of soil. These are quartz, other
Auckland, NZ in 1998. Since the soil is in	soil minerals, water, organic matter, and air,
the heat flow path between the cable and the	in order of increasing resistivity. The actual
ambient environment, and therefore forms	values for these materials are 0.1, 0.4, 1.7,
part of the thermal resistance, soil thermal	4.0, and 40 m C/W. Without knowing
properties are an important part of the overall design.	anything about the weighting factors for these in an actual soil or fill material, four
overan design.	things should be clear:
The detailed calculations needed to correctly	unings should be clear.
design an underground cable system have	1) Air is bad. Fill must be tightly packed to
been known for over 60 years. The	minimize air space, in order to achieve
procedures typically used are outlined in	acceptably low thermal resistances.
Neher and McGrath (1957), and, more	
recently by the International	2) Replacing air with water helps a lot, but
Electrotechnical Commission (1982). These	water is still not a very good conductor.
calculations can be done by hand, but most engineers now use either commercial or	3) Organic matter, no matter how wet, will
home-brew computer programs. The	still have a very high resistivity.
calculations are quite detailed, and are	sum nave a very mgn resistivity.
generally based on sound physics or good	4) Fill materials high in quartz will have the
empiricism, until one gets to the soil. Then	lowest resistivity, other things being equal.
the numbers chosen often are almost a shot	· · · · · · · · · · · · · · · · · · ·