

we measure the world®

What is my soil moisture sensor trying to tell me? Part II

Colin Campbell, Decagon Research Scientist Chris Chambers, Application Support Specialist Lauren Crawford, Soil Moisture Product Manager

Wait...what did I miss in Part I?

- How soil moisture sensors are used to make irrigation more efficient (for irrigating crops and turf)
- How soil moisture sensors are used to optimize fruit quality in a vineyard
- How soil moisture sensors are used in a rangeland study to help make grazing decisions
- Volumetric water content verses soil water potential

Today's agenda

- Soil water content data spatially (both across the landscape and over depth)
- Soil moisture data to look at treatment effects
- More irrigation data sets

Why are we doing this?

- We get requests to help interpret data sets all of the time
- It's much more efficient to discuss our ideas with 200 people instead of each person one on one

Whose voice is that?

 Troubleshoots and interprets soil moisture data every day

 Learned from her many mistakes making soil moisture measurements

Colin Campbell

- Developed most of our soil moisture sensors
- Extensive
 experience in
 his own
 research

How to use today's seminar

Make comments, ask questions, challenge our assumptions

Use what you learn to make better conclusions about your soil moisture data

Poll questions 1

Did you watch Part I of this seminar series?

- Yes
- No

Dryland wheat soil moisture profile

- 37 ha dry-land farm, wheat, barley, legume rotation
- Palouse silt loam, hard pan in places
- 510 mm average precipitation (primarily winter/spring)
- Continuous rotation
- Rolling hills (40 m elevation differences)

Site description

Setup

- 12 sites (expanded to 42 in 2009)
- 5 depths at 30 cm increments
- VWC, EC, temperature sensors

Installation

- 30 cm sensor: trench sidewall
- 60 150 cm sensors: Inserted into bottom of 5 cm auger hole
- Soil repacked

Site 1 Dry-down: Winter wheat, hilltop site

Poll question 2

The 120 cm sensor started higher and ended lower, Why?

- 1. Low bulk density comparatively
- 2. Perched water from hardpan below
- 3. Bad installation

Site 1 Dry-down: Winter wheat, hilltop site

Site 1 Dry-down: Water use by depth

Volumetric Water Content (m³ m⁻³)

Site 1 Wet-up

Wet-Up: Water use by depth

Volumetric Water Content (m³ m⁻³)

Rangeland soil moisture on the Wasatch Plateau (Utah)

- Grazing exclosures and rainout shelters
- Volumetric water content monitored with GS3 sensors at each site.

Data courtesy of Richard Gill, Brigham Young University

Precipitation treatment effect on water potential (2010)

Precipitation treatment effect on water content during a high than average precip year (2011)

Pinot Noir with Deficit Irrigation

- Comparison of growing conditions and soil moisture conditions 2011-2014
- Loam at the top of the rooting zone, transitioning to a sandy loam, then sand
- Water content measured at four depths, averaging eight sensors per depth
- Water potential measured at one depth, averaging six sensors per depth

Precipitation Comparison 2011-2014

GDD Comparison 2011-2014

VWC Comparison 2011-2014

Water potential comparison 2011-2014

VWC by depth in 2011

Water balance in irrigated garlic

- Precipitation, irrigation monitored
- Drainage under root zone monitored with two drain gauges per site
- Soil water storage monitored at three depths with 10HS water content sensors
- Water potential measured at one depth with MPS-2 sensors at six locations

Field Sensor Network: Precipitation, Irrigation, Drainage, & SWC (Garlic)

Farming D Garlic Block 11A

Field Sensor Network: Soil Volumetric Water Content By Depth (Garlic)

Farming D Garlic Block 11A

Field Sensor Network: Soil Water Potential (Garlic)

EMITTER Ψ 8" MEAN (Bars)

Thank you for sharing!

- Larry Parsons and University of Florida
- Water & Earth Sciences (<u>www.waterearthsciences.com</u>)
- Lab Ferrer (<u>www.lab-ferrer.com</u>)
- Umiker Vineyards (<u>www.clearwatercanyoncellars.com</u>)
- Richard Gill and Brigham Young University
- James Leary and CTAHR Maui County Cooperative Extension Service

QUESTIONS?

